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1. Introduction

Humans are involved in every man-machine system. More often accidents and systems

failure are traced to human errors. As such humans play an important role in the overall

reliability of engineering systems because various systems are interconnected by human

links. Therefore, in order to have meaningful system reliability analysis, the reliability of

the human element must be taken into consideration.

Human reliability can be improved significantly by following human-factor principles

during the system design phase. Additional enhancement may be obtained from careful

selection and training of appropriate personnel. Appropriate design of the system and

equipment also help to increase human reliability. However, even when selection and

training are efficiently carried out and appropriate design features are incorporated, people

are not always reliable. They make mistakes, and in some cases, their errors will lead to

systems failure and accidents.

In this research effort, the issue of human errors in the processing of the shuttle and other

flight programs is investigated. Such events as sending the wrong command or assembling

the wrong parts tend to recur despite efforts at prevention. In studying human errors, one

of the important problems is how to represent the human variables quantitatively in

mathematical models. Therefore, stochastic models to address the occurrence of human

errors in certain systems are needed. This report, which was completed and submitted to

KSC on June 23, 1999, presents such stochastic models. These models have never been

used in this particular application before.

The availability ofprobabilistic models of the processing work flow might offer the

opportunity to analyze contributing factors and test process improvements that could

reduce or eliminate these events. These models may enable us to predict trigger events



that leadto failuremodesandaffecthumanperformance.Theavailabilityof technologies

to improvesituationalawarenesswill increase systems safety.

A human error is defined as a failure to perform a prescribed task or the performance of a

prohibited action that could result in damage to equipment and property or disruption of

scheduled operations. Various factors may lead to a human error. Some of these factor

are inadequate lighting, high noise level, improper tools, stress, fatigue, and poor

equipment design.

In order to prevent errors, we must first be able to predict them. Therefore, the objective

of this research effort is to establish probabilistic models substantiated by sound theoretic

foundation to address the occurrence of human errors in the processing of the space

shuttle and other fight programs.

2. Human Variables

Human errors may also be caused by human variables such as proficiency, fatigue,

learning, stress reaction, group interaction variables, norms and goals, group

identification, cohesiveness, social pressure, and morale. This topic is covered extensively

in the open literature, see [2] and the reference therein, here we shed the light on two of

such variables as examples,

(A) Fatigue: Fatigue is one of the principal human variables which lead to errors. A

definition of fatigue is the subjective residue of feelings of bodily discomfort and aversion

to effort. Fatigue may be caused by long work shifts, insufficient rest, monotony (tedious

sameness), surroundings (poor lighting, noise, atmospheric conditions), mental factors



(responsibility,worries,conflicts),illnessandpain,eatinghabits,etc. It isgenerally

considereda time-correlateddisorderthataffectsperformanceinmanywayssuchas:

(a) Responsesaremadetoo lateor too early,

(b) responsesaremadetoo intensely,

(c) occasionalresponseomissionsaretypical,and

(d) increasedfatigueleadsto decreasedperformance,andmeanperformancetime

decreases.

For example,in thecaseof commercialairlinepilots, thefrequencyof humanerror (e.g.,

forgetfulness,improperadjustmentof controls,etc.)will increaseif apilot is fatigued.

Acutefatigueis generallyeasierto identifyandrelieve. Chronicfatigueis ageneralized

responseto stressoveraperiodof time. Thus,cumulativeeffectsof thework situation

becomeimportant.

(B) Stress: This is another important human variable that affect human performance and

its reliability. There is a nonlinear relationship between human performance and stress:

when the stress is moderate the performance is highest. Otherwise, at very low stress, the

task will be unchaUenging and dull and thereby human performance will not be at its peak.

On the other hand, stress above a moderate level will cause human performance to decline.

Reasons for the decline include, for example, worry, fear or other kind of psychological

stress. Moderate stress may be defined as the level of stress enough to keep the human

being alert.



3. Characteristics of Human Error

There are some similarities between man (with multiple organs and functions) and a

machine (with multiple components and functions) in terms of their proneness to failure,

which leads to parallelism of methods of analysis in each. However, the human failure

process has its peculiar features. Human errors are of random recurring type, whereas

hardware failure condition is irreversible by itself. That is why hardware reliability is

concerned with the first failure. A human may continually improves his performance from

learning unlike his machine-counterpart. There are three important aspects of human

error:

a) the possibility of self-detection or detection by another person,

b) the ability to be corrected or recovered, and

c) its consequences.

When an error is made, it may or may not be recognized by the operator as an error. If it

is not recognized, then the operator cannot take any further action. If it is recognized, it

may or may not be correctable. In most cases, operators are motivated to take action to

correct errors if they are able. However, if the error is not correctable, the consequences

must be considered. Such consequences may be major or minor. Major consequences

would require the operator to take immediate alternative action, but minor ones may only

require continued monitoring to see if further action is required at a later time.



4. Learning Curves

A graphicprofile of the learner'sperformancereflectingan increaseof the speedand/or

accuracyis calledalearningcurve. Suchacurveplotssomemeasureof performance

(suchasspeed,accuracy,errors,hits, etc.) againstsomemeasureof the amountof

practice(e.g.trials,days). Individualscanlearnnewworking skills;groupscanlearn

cooperativeskills. Theincreasedproductivityresultingfrom learningacertainoperation

caninfluencethecompletiontime of atask. Therelationshipbetweencompletiontime

andnumberof taskscompletedis expressedby anexponentialfunction

-bZ=an

where,

n = number of tasks accomplished

a = time required to complete the first task

b = positive exponent associated with the learning rate

T = the accumulated average time per task

(1)

Each time the operation is repeated, the curve forecasts decrease in time. The decrease in

time is the result of improved methods, procedures, or worker familiarization.

Remark: If b = 0 no learning occurs. In case of forgetfulness or inattention, b < O, and T

increases in time.

Definition: The Learning Rate

The reduction ratio of the accumulated average times in doubling the number of tasks

accomplished is defined as the learning rate r,

a (2n) -b _ 2 -b
r -- a n-b (2)



The learning rate remains relatively constant for a given individual, group, or industry.

Therefore,

b - In r
ln2 (3)

In practical situations, r varies from 50% (fast learning) to 100% (no measurable

learning). If forgetting occurs as bad habits are picked up, a theoretical learning rate could

exceed the 100% limit.

5. Modes of Error Detection

People's errors are brought to their attention in three ways:

a) directly, they can find out for themselves through various kinds of self-monitoring,

b) environmental indication that makes it very clear that they made an error, and

c) indirectly, the error may be discovered by another person, who then tells them.

6. Stochastic Models of Human Errors

Probabilistic models of human performance in discrete and continuous tasks are developed

in this section. The approach used in these models is to view the human as a whole (as a

black box) with a finite number oftmknown parameters. Once the structural model of the

operator is chosen, the problem is reduced to one of parameter estimation.



Model 1

Discrete Model

Nonstationary Bernoulli Trials: These are Bernoulli trials with variable probabilities from

trial to trial. In a sequence of a repetitive_trials of a given task, a human can fail to

perform a prescribed act or perform a prohibited act, thus causing a system failure. Here

we assume that the probability of committing an error decreases as the number of trials

increases in accordance to the learning curve theory. That is, the operator cominually

improves his performance from learning.

Let {X 1, X 2, X 3, ---, Xn} be a finite sequence of mutually independem random

variables taking the values 0 (No error), or 1 otherwise. Assume that the error

probabilities are_independent of the past performance record (previous tasks).

Let Pk = P(Xk =0), qk -- P(Xk = 1) - 1 - Pk, and

Sn = the total number of errors in the first n independent trials
n

=
k=l

The expected value of S n is

Mn = E[Sn]
I1 11

= _E[Xk] = Y_'_qk
k=l k=l

The average probability of an error in n trials is
n

_-_E[Xk]

q _ k=l __ Mnn n (4)

A model shaped after the general learning curve can be constructed by setting the average

probability of an error, Equation (4),.equal to an exponential function in Equation similar

to that in Equation (1), see [5], to obtain



M__a= an-b
n

where a > 0 and b > 0 are parameters to be estimated. The parameter a, 0 _< a _< 1,

represents the error probability on the first trial (n -- 1).

(5)
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An expression for the error probability on the nth trial can be obtained from Equation (4),

qn

n n-1

= _--_qk -- }-_qk
k=-I k=-I

= a[n 1-b __ (n- 1) l-b] (6)

The total expected number of errors in a fixed sequence of trials from trial number n 1 to

trial n 2 is

Mn2 - Mn,-1 = a[n 2-b - (nl - 1) t-b] (7)

The human reliability that a prescribed sequence of successive trials from trial number

n 1 through trial number n 2 is completed without errors is

n2 n2

R(n 1,n 2) = I-I Pk = H (l -- qk ) (8)

k=nl k=nl



Parameter Estimation:

Let m 1 = the number of errors occurred in the first n 1 trials

m2

Then,

ml

m2

and

m.._!.1
m2

1-b
m2n 1

= the number of errors occurred in the sequence of trials from trial

number (n _+ 1) through trial number n 2

1-b
= an 1

1 1= an -b --ml=an -b_an 1

n ]-b

nl-b_ n 1-b

: ml(n21-b _ nl -b)

(9)

(10)

ml

ml+m2

or

= (n1_22)1-b

(1 b) nl= - tn(_)

From which

b -ln ml- In (m l+ m2)]= 1 -- [ lnni--lnnz (11)

Now Equation (10), yields

m 1+ m2 = a n21-b

or

A

= (ml+ m2) n2 b-1 (12)



Remarks: 1. If there is no learning r = 100% and, from equation (2), r = 2 -b, SO b = 0.

Therefore, from Equation (6), q 1= q 2 = q 3 = ... = a, and the process degenerates into an

ordinary BernouUi trials (as expected).

n

2. For large values of n and moderate values of Mn = _-_'_qk , Mn :-- A for large n, it
k=l

can be shown that S n , the distribution of the total number of errors in the first n

independent trials is approximately Poisson, see [3].

p(Sn=k) - ae -_k! , where an estimate of A (using Equation (5)) is

A AA = an 1-_

10



Model 2

Discrete Model

As in model 1, we assume Bernoulli trials with variable probabilities from trial to trial.

Here we assume that the probability of committing an error increases as the number of

trials increases exponentially because the operator's performance is deteriorating due to,

M.
say, stress or fatigue. Since -_- is an average probability, it should be nonnegative and

bounded above by 1, and in this case nondecreasing, so instead of Equation (5) we use

or

M______ -- 1 - an -b
n

Mn = n - an 1-b (13)

where a > 0 and b > 0 are parameters to be estimated. The quantity (1 - a), 0 _< a < 1,

represents the error probability on the first trial (n = 1).
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In thiscaseanexpressionfor theerrorprobabilityonthenthtrial canbeobtainedfrom

Equation(13),

qn

n n-1

= Eqk - Y'_.qk
k=l k=-I

= n -- anl-b -- [n --1 --a(n--1) i-b]

= 1 -- a[n 1-b _ (n -- 1)l-b] (14)

The total expected number of errors in a fixed sequence of trials from trial number n I to

trial number n 2 is

Mn2 -- Mn,-1 = n2 -- n, - a(n21-b + nl l-b) (15)

The human reliability that a prescribed sequence of successive trials from trial number

n 1 through trial number n 2 is completed without errors is

n2 n2

R(n_,n2) = 1-I Pk = 1-I(1 --qk ) (16)
k = nl k---n1

Parameter Estimation:

Let M 1 = the number of errors occurred in the first n 1 trials

Then,

M2 = the number of errors occurred in the sequence of trials from trial

number (n 1+ 1) through trial number n 2

1-b
M1 = nl --an 1 (17)

and

M1 + M2
1-b

= n2 -- an 2 (18)

12



or

nl -M_

n2 --M1--M2

n ]-b

nj-_Mj ._
ln(n 2 -MI-M2 j = (1 b) n,- ln(G )

From which

A

b = 1 - [ln(n,-Ml) - ln(n2-M,-M2)]
lnnl- lnn2 (19)

Now Equation (18), yields

n2-M1-M2 = an21-b

or

A

= (n2 -- M1- M2) n b-1 (20)

Remark: If the average error probability -_ does not increase then, from its definition, b

= 0. Therefore, from Equation (14), q 1= q2 = qa = ---= (1 -- a), and the process

degenerates into an ordinary Bernoulli trials (as expected).

13



Model 3

Continuous Time Model (Decreasing Mean Value Function)

The system is being improved over time or the operator continually improves his

performance from learning in continuous time tasks. Learning is assumed to take place in

a systematic way compatible with the general learning curve.

Assumptions: 1. Human errors occur at random times, and each error is treated as an

event without duration. The number of human errors by time t is denoted by N(t).

2. The operator continually improves his performance from learning.

3. The number of human errors during nonoverlapping intervals do not affect each other.

This means that the counting process {N(t): t _> 0} has independent increments.

Definition: The counting process {N(t): t 2 0} is called a nonhomogeneous (or non

stationary) Poisson process, see [6], with intensity function A(t), t > 0, if

(a)

(b)

(c)

(d)

N(O)=0

{N(t): t > O} has independent increments,

In any time interval (no matter how small) there is a positive probability that an

event will occur (but is not certain), i.e., for any t > O, 0 < P(N(t) > O) < 1.

In sufficiently small intervals, at most one event can occur, i.e., it is not possible

for events to happen simultaneously.

Let M(t) = E[N(t)] = Mean Value function

The intensity function A(t) is the rate of change of the mean value function M(t), i.e.,

A(t) - M(t) M(t) f0 A(s) ds. The distribution of the number of"error events" indt or =

the an interval (t, t + s] is given by

P(N(t + s) - N(t) = j) = e - (M(t+s) -M(t)) (M(t+s) -- M(t))Jj! , j>O (21)

14



To constructamodelfashionedafterthegeneralleamingcurvetheory,see[5], assume

thatthetime-averagedmeanvaluefunctiontakestheform

M(t) = A t- a t > 0 a > 0 (22)

The parameters A > 0 and a _> 0 are to be estimated. The parameter A represents the

mean value (expected number) of errors at the first unit time, t = 1.
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The counting process {N(t) "t _> 0} is a nonhomogeneous Poisson process

(or a Poisson process with nonstationary increments) with mean value function (or

expectation function)

M(t) = A t 1-'_

Therefore,

P {N(t2) - N(tl) = k} = (AM(tl"tz))ke -z_M(tl,t=)
k!

for any 0_<tl_<t2, k_>0,

where

AM(t1 ,t2) = M(t2) - M(h)

=A(t_ -_ - tl -_)

(23)

(24)

(25)
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Thehumanreliabilitythat a giventaskof specified time duration [tl ,t2 ] is performed

successfully without any errors is

R(tl,t2) = P{N(t2) - N(tl) = 0} =e -A (t-'- _ - t',- _) (26)

Remark: When there is no learning a = 0, M(t) = At, and the counting process

{N(t) • t _> 0} degenerates into homogeneous Poisson process (with stationary

increments). In this case, the human reliability for the time interval [0,t] reduces to

-AtR(0,t) = e (27)

Parameter Estimation:

Let ml = Number of errors occurred in the time interval [0,t ,]

m2 = Number of errors occurred in the time interval [t 1,t 2]

Then

ml = A t] 1-a

m2 = A t21-a -- ml

Solving simultaneously, we obtain:

(28)

(29)

or

]n( m 1_)

ct = 1 - ln(_)

A

lnml - ln(ml +m2)
OZ --1 --

lnt I - lnt 2

(30)

and

A

C_--1

A = (m, +m2)(t 2 ) (31)

16



Model 4

Continuous Time Model (Increasing Mean Value Function)

Here the operator's performance is continually deteriorating due to certain factor such as

long work shifts, insufficient rest, monotony (tedious sameness), surroundings (poor

lighting, noise, atmospheric conditions), mental factors (responsibility, worries, conflicts),

illness and pain, eating habits, etc.

Let

N(t) = Number of errors by time t

The counting process {N(t) : t > 0} is a nonhomogeneous Poisson process

(or a Poisson process with nonstationary increments). In order to construct a probabilistic

model of human errors which accounts for deteriorating performance, the time-average

mean value function is assumed to be exponentially increasing of the form

M(t) = 1 -- A t- _ t > 0 a > 0t , , , (32)

The parameters A _>. 0, a _> 0, are to be estimated. The quantity (1 - A) represents the

mean value (or expected number) of errors committed by time t = 1.
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The counting process {N(t): t > 0} is a nondecreasing Poisson process (or a Poisson

process with nonstationary increments) with mean value function

M(t)

Therefore,

=t - At 1-a (33)

P{N(t2) - N(tl) =j}

where

AM(t 1,t 2)

= (/_M(i!_,t2))Je-AM(t 1, t 2), (34)

forany 0<tl <t2,j>0,

= M(t 2) - M(t 1)

- '-a -- t l -a ) (35)-(t2 -- tl) -- A(t 2

The human reliability, which is the probability that a given task of specified time duration

[t 1,t 2] is performed successfully without any errors, is therefore

R(t 1,t 2) = P{N(t 2) - N(t 1) = 0} = e-[(t2. t') - _x(t_-_ - t I-_) (36)

Remark: If _ = 0 (no cause of deteriorating performance), M(t) = ct, where c = 1 - A

is a constant. In this case the counting process {N(t): t _> 0} degenerates into

homogeneous Poisson process (with stationary incremems), and the human reliability for

the time interval [0,t] reduces to

R(0,t) =e -ct (37)

18



Parameter Estimation:

Let ml = Number of errors occurred in the time interval [0,t, ]

m2 = Number oferrors occurred in the time interval [t 1,t 2]

Then

ml = t 1 - A tl l- _

m2 = t 2 - A t21- a - m_

(38)

(39)

Solving simultaneously as before we obtain:

or

tl-m 1 .
In[ t2_(ml +m2) j

C¢
In(_)

-1

(40)

A

OL = 1 - ln(tl-ml)-ln(t2-ml-m2)
lnt _ - lnt 2

and

A _m 1

/_ = (t 2 -- ml - m2)t 2 (41)

19



Model 5

Continuous Time Model

Hazard Rate Technique

The general human performance reliability function for continuous time tasks can be

developed the same way as the case of the classical reliability function. Examples of

continuous time tasks performed by humans are aircraft maneuvering, missile countdown,

and monitoring. Two methods are presented here, and it will be shown that the two

methods lead to the same result. We first recall basic definitions

Definition 1: Hazard Rate Function (or Human Error Rate)

Consider a positive continuous random variable X(t), e.g. the lifetime of some item or

time to failure, having distribution function F and probability density function f. The

hazard rate (human error rate, or failure rate) function h(t) of F is defined by

h(t) - fit)
1 -F(t) (42)

Definition 2: The Human Performance Reliability at Time t, R(t), is the probability of

performing a task without errors till time t. Thus

R(t) = P(X>t) =l-F(t) (43)

The time-dependent human error rate or hazard rate function h(t) is usually (using

Equation (42)) written as

h(t)- -1 dR(t)
R(t) dt

Integrating both sides over the time interval [0, t], we obtain

fo h(s) ds - fo _ dR(s), where R(0)= 1. Thus,
l,_ko J

(44)

R(t) : e - Jo h(s) ds (45)

20



Thereliabilityexpressionin Equation(45)holdswhetherthehumanerrorrate(or hazard

rate)is aconstantor nonconstant.Wenoteherethatthehumanerror ratecouldbe

describedby probabilitydistributionssuchasexponential,Rayleigh,Weibull,normal,or

bathtubdistributions.For instance,theWeibulldensityfunctionisknownto fit the

experimentaldatain thecaseof vigilancetask,seereference[4].

If wemodel N(t) thenumberof humanerrorsthat occur in the time interval [0, t] as a

Markov process, then the following assumptions are appropriate:

(a) N(0) = 0

(b) Independent increment assumption: The number of errors that occur in disjoint

time intervals are independent.

(c) Stationary: The distribution of the number of errors that occur in a given

interval depends only on the length of that interval and not on its time-location,

i.e., the probability distribution of N(t + s) - N(s) is the same for all s _> 0

and t>0.

(d) P{N(At) = 1} = AAt + o(At)

(e) P{N(At ___2} = o(At)

Remarks: 1. Assumptions (a) through (e) mean that the process {N(t): t _> 0} is a

Poisson process (a type of Markov process) having intensity parameter A.

2. For s _> 0 and t > 0, the random variable N(t + s) - N(s), representing the number

of human error over the interval (s, s + t], has a Poisson distribution with mean At, i.e.,

P{N(t + s) - N(s) = k} - (At)ke-Xtk! for k=0, 1, .... (46)

21



Let P0(t) betheprobabilitythatahumanis performingataskcontinuouslyat timet

without errors,thenP0(t)= P{ N(t) = 0 } anda differentialequationfor P0(t)canbe

constructed,usingtheaboveassumptions,asfollows:

P0(t+ At) = P{N(t + At)= 0}

= P{N(t) = 0, N(t + At) - N(t) = 0}

= P{N(t) = 0}P{N(t + At) - N(t) = 0}

= P0(t)[1 - P{N(At) = 1} - P{N(At _>2}],

usingassumptions(d) and(e),

= P0(t)[1 - AAt + o(At)]

Thus,
Po(t + At) -- Po(t) o(At)

At = -- AP0(t) + At

Now, letting At _ 0, we obtain

P_(t) = - AP0(t), where P0(0)- 1.

Integrating, we obtain

- AtP0(t) = e (47)

If the intensity of human error rate A is not a constant Equation (46) becomes

P0(t) = e-fo ,X(s)ds (48)

We note that Equation (48) is consistent with Equation (45), since the human reliability

function R(t) = P0(t), the probability of committing no errors. Therefore, the two

methods lead to the same result. It follows that the probability of committing at least one

human error is

Ph(t)

Ph(t)

=1-- e-At , if A is a constant

= 1 - e-fo ,X(s)ds , if A is not a constant

(49)
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Example: Human error rate associated with Weibull distribution.

The Weibull distribution function has the form

0
F(t) =

1 exp[ t- v _]- - (.__)

and the density fimction is

t>v

t<v

0fit) = a.,-,. (,-v. a]_(.._)a- l exp[- -a'-) t>v

t<v

For v = 0, the time-dependent human error rate (or hazard rate) function, using Equation

(42), is

h(t) = _,--_, = _.(_)_- 1
v=O

and the human performance reliability, using Equation (48), is

_ I'tpfs_#- !
R(0 e -0_-_- ds _ (_)_= =e ,t>0 (51)

where cz and 13 are parameters to be estimated using appropriate statistical technique, such

as the maximum likelihood estimation method, see [1 ].

h( O = (B/e) (tie) n-'

1/#

I !
I 2

Graphs of theWeibull hazard functionsh(0
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Remarks: 1. In the definition of hazard rate function h(t), if X(t) denotes the number

of error occurrences in a specified interval [0, t], then it can be shown that X(t) is a

nonhomogeneous Poisson process with mean value function M(t), where

M(t) - fo h(s) ds.

2. Comparing Equations (45) and (48), we see that h(t) = A(t). The time-dependent

human error rate is the intensity function of the nonhomogeneous Poisson process (see

definition in Model 3).

3. An important choice for a nonhomogeneous intensity function is

h(t) = A(t) = _(t)_-l,

which gives

M(t) = f0t_(_s)fl-1 ds = (t)_

In this case the time to first human error occurrence follows a Weibull distribution with

parameters a and ft.

t ) _ - 1 is an increasing function of t if/3 > 1 a4. The intensity parameter A(t)= _(_

decreasing function of t if fl < 1, and a constant function of t if /3 = 1.

5. The /3 < 1 case might apply to a developmental situation in which the system is being

improved over time. This is similar to the situation in model 3 where the performance is

being improved due to learning.

6. The fl > 1 case might apply to a situation where the performance is deteriorating as

that in model 4.

7. For any hazard rate function (human error rate) h(t), the associated distribution and

density functions can be obtained by integrating Equation (42) and using f(t) - dF(t)dt

to get the relationship

F(t) = 1 - exp[- fo h(s) ds]

or

f(t) = h(t) exp[- f0 h(s) ds].
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